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10.6 Polar Equations of Conics and Kepler’s Laws

Analyze and write polar equations of conics.
Understand and use Kepler’s Laws of planetary motion.

Polar Equations of Conics
In this chapter, you have seen that the rectangular equations of ellipses and hyperbolas
take simple forms when the origin lies at their centers. As it happens, there are many
important applications of conics in which it is more convenient to use one of the foci as
the reference point (the origin) for the coordinate system. For example, the sun lies at
a focus of Earth’s orbit. Similarly, the light source of a parabolic reflector lies at its
focus. In this section, you will see that polar equations of conics take simpler forms
when one of the foci lies at the pole.

The next theorem uses the concept of eccentricity, as defined in Section 10.1, to
classify the three basic types of conics.

In Figure 10.57, note that for each type of conic, the pole corresponds to the fixed
point (focus) given in the definition.

Ellipse: Parabola: Hyperbola:

Figure 10.57

The benefit of locating a focus of a conic at the pole is that the equation of the conic
becomes simpler, as seen in the proof of the next theorem.
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THEOREM 10.16 Classification of Conics by Eccentricity

Let be a fixed point (focus) and let be a fixed line (directrix) in the plane. 
Let be another point in the plane and let (eccentricity) be the ratio of the 
distance between and to the distance between and The collection of 
all points with a given eccentricity is a conic.

1. The conic is an ellipse for 

2. The conic is a parabola for 

3. The conic is a hyperbola for 

A proof of this theorem is given in Appendix A.
See LarsonCalculus.com for Bruce Edwards’s video of this proof.
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Graphing Conics Set a
graphing utility to polar
mode and enter polar 
equations of the form

or

As long as the graph
should be a conic. What 
values of and produce
parabolas? What values 
produce ellipses? What 
values produce hyperbolas?
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10.6 Polar Equations of Conics and Kepler’s Laws 735

Proof This is a proof for with In Figure 10.58, consider a
vertical directrix units to the right of the focus If is a point on
the graph of then the distance between and the directrix can
be shown to be

Because the distance between and the pole is simply the ratio of to is 

and, by Theorem 10.16, the graph of the equation must be a conic. The proofs of the
other cases are similar. 
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

The four types of equations indicated in Theorem 10.17 can be classified as
follows, where 

a. Horizontal directrix above the pole:

b. Horizontal directrix below the pole:

c. Vertical directrix to the right of the pole:

d. Vertical directrix to the left of the pole:

Figure 10.59 illustrates these four possibilities for a parabola. Note that for 
convenience, the equation for the directrix is shown in rectangular form.
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THEOREM 10.17 Polar Equations of Conics

The graph of a polar equation of the form

or

is a conic, where is the eccentricity and is the distance between the
focus at the pole and its corresponding directrix.
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The four types of polar equations for a parabola
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736 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

Determining a Conic from Its Equation

Sketch the graph of the conic 

Solution To determine the type of conic, rewrite the equation as

Write original equation.

So, the graph is an ellipse with You can sketch the upper half of the ellipse by
plotting points from to as shown in Figure 10.60. Then, using symmetry
with respect to the polar axis, you can sketch the lower half.

For the ellipse in Figure 10.60, the major axis is horizontal and the vertices lie at
(15, 0) and So, the length of the major axis is To find the length of the
minor axis, you can use the equations and to conclude that

Ellipse

Because you have

which implies that So, the length of the minor axis is 
A similar analysis for hyperbolas yields

Hyperbola

Sketching a Conic from Its Polar Equation

See LarsonCalculus.com for an interactive version of this type of example.

Sketch the graph of the polar equation 

Solution Dividing the numerator and denominator by 3 produces

Because the graph is a hyperbola. Because the directrix is the line
The transverse axis of the hyperbola lies on the line and the vertices

occur at

and

Because the length of the transverse axis is 12, you can see that To find write

Therefore, Finally, you can use and to determine the asymptotes of the
hyperbola and obtain the sketch shown in Figure 10.61.
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Kepler’s Laws
Kepler’s Laws, named after the German astronomer Johannes Kepler, can be used to
describe the orbits of the planets about the sun.

1. Each planet moves in an elliptical orbit with the sun as a focus.

2. A ray from the sun to the planet sweeps out equal areas of the ellipse in equal times.

3. The square of the period is proportional to the cube of the mean distance between
the planet and the sun.*

Although Kepler derived these laws empirically, they were later validated by Newton.
In fact, Newton was able to show that each law can be deduced from a set of
universal laws of motion and gravitation that govern the movement of all heavenly 
bodies, including comets and satellites. This is shown in the next example,
involving the comet named after the English mathematician and physicist Edmund
Halley (1656–1742).

Halley’s Comet

Halley’s comet has an elliptical orbit with the sun at one focus and has an eccentricity
of The length of the major axis of the orbit is approximately 
35.88 astronomical units (AU). (An astronomical unit is defined as the mean distance
between Earth and the sun, 93 million miles.) Find a polar equation for the orbit. How
close does Halley’s comet come to the sun?

Solution Using a vertical axis, you can choose an equation of the form

Because the vertices of the ellipse occur when and you can
determine the length of the major axis to be the sum of the values of the vertices, as
shown in Figure 10.62. That is,

So, and

Using this value in the equation produces

where is measured in astronomical units. To find the closest point to the sun (the
focus), you can write 

Because is the distance between the focus and the center, the closest point is

miles. 
 55,000,000

 
 0.59 AU

 a � c 
 17.94 � 17.35

c

c � ea 
 �0.967��17.94� 
 17.35.

r
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ed 
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2a 
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 29.79d.
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0.967d
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� � 3��2,� � ��2

r �
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�1 � e sin � �.

e 
 0.967.

* If Earth is used as a reference with a period of 1 year and a distance of 1 astronomical
unit, then the proportionality constant is 1. For example, because Mars has a mean distance
to the sun of its period is So, the period for Mars is P 
 1.88.D3 � P2.PD 
 1.524 AU,

JOHANNES KEPLER (1571–1630)

Kepler formulated his three laws
from the extensive data recorded
by Danish astronomer Tycho
Brahe, and from direct 
observation of the orbit of Mars.
See LarsonCalculus.com to read
more of this biography.
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Kepler’s Second Law states that as a planet moves about the sun, a ray from the sun
to the planet sweeps out equal areas in equal times. This law can also be applied to
comets or asteroids with elliptical orbits. For example, Figure 10.63 shows the orbit of
the asteroid Apollo about the sun. Applying Kepler’s Second Law to this asteroid, you
know that the closer it is to the sun, the greater its velocity, because a short ray must be
moving quickly to sweep out as much area as a long ray.

A ray from the sun to the asteroid Apollo sweeps out equal areas in equal times.
Figure 10.63

The Asteroid Apollo

The asteroid Apollo has a period of 661 Earth days, and its orbit is approximated by the
ellipse

where is measured in astronomical units. How long does it take Apollo to move from
the position to as shown in Figure 10.64?

Solution Begin by finding the area swept out as increases from to 

Formula for area of a polar graph

Using the substitution as discussed in Section 8.6, you obtain

Because the major axis of the ellipse has length and the eccentricity is
you can determine that

So, the area of the ellipse is

Area of ellipse

Because the time required to complete the orbit is 661 days, you can apply Kepler’s
Second Law to conclude that the time required to move from the position 
to is

which implies that 109 days.t 
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10.6 Polar Equations of Conics and Kepler’s Laws 739

10.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Graphical Reasoning In Exercises 1– 4, use a graphing
utility to graph the polar equation when (a) (b) 
and (c) Identify the conic.

1. 2.

3. 4.

5. Writing Consider the polar equation

(a) Use a graphing utility to graph the equation for 
and Identify the

conic and discuss the change in its shape as and

(b) Use a graphing utility to graph the equation for 
Identify the conic.

(c) Use a graphing utility to graph the equation for 
and Identify the conic and discuss the change

in its shape as and 

6. Writing Consider the polar equation

(a) Identify the conic without graphing the equation.

(b) Without graphing the following polar equations, describe
how each differs from the polar equation above.

(c) Verify the results of part (b) graphically.

Matching In Exercises 7–12, match the polar equation with
the correct graph. [The graphs are labeled (a), (b), (c), (d), (e),
and (f).]

(a) (b)

(c) (d)

(e) (f)

7. 8.

9. 10.

11. 12.

Sketching and Identifying a Conic In Exercises 13–22,
find the eccentricity and the distance from the pole to the 
directrix of the conic. Then sketch and identify the graph. Use
a graphing utility to confirm your results.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

Identifying a Conic In Exercises 23– 26, use a graphing
utility to graph the polar equation. Identify the graph and find
its eccentricity.

23. 24.

25. 26.

Comparing Graphs In Exercises 27–30, use a graphing
utility to graph the conic. Describe how the graph differs from
the graph in the indicated exercise.

27. (See Exercise 16.)

28. (See Exercise 18.)

29. (See Exercise 19.)

30. (See Exercise 20.)r �
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740 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

31. Rotated Ellipse Write the equation for the ellipse rotated
radian clockwise from the ellipse

32. Rotated Parabola Write the equation for the parabola
rotated radian counterclockwise from the parabola

Finding a Polar Equation In Exercises 33–44, find a polar
equation for the conic with its focus at the pole. (For 
convenience, the equation for the directrix is given in rectangular
form.)

Conic Eccentricity Directrix

33. Parabola

34. Parabola

35. Ellipse

36. Ellipse

37. Hyperbola

38. Hyperbola

Conic Vertex or Vertices

39. Parabola

40. Parabola

41. Ellipse

42. Ellipse

43. Hyperbola

44. Hyperbola

45. Finding a Polar Equation Find a polar equation for 
the ellipse with focus eccentricity and a directrix at

46. Finding a Polar Equation Find a polar equation for the
hyperbola with focus eccentricity 2, and a directrix at

51. Ellipse Show that the polar equation for is 

Ellipse

52. Hyperbola Show that the polar equation for is

Hyperbola

Finding a Polar Equation In Exercises 53–56, use the
results of Exercises 51 and 52 to write the polar form of the
equation of the conic.

53. Ellipse: focus at vertices at 

54. Hyperbola: focus at vertices at 

55.

56.

Area of a Region In Exercises 57–60, use the integration
capabilities of a graphing utility to approximate, to two 
decimal places, the area of the region bounded by the graph of
the polar equation.

57. 58.

59. 60. r �
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��6

WRITING ABOUT CONCEPTS
47. Eccentricity Classify the conics by their eccentricities.

48. Identifying Conics Identify each conic.

(a) (b)

(c) (d)

49. Distance Describe what happens to the distance
between the directrix and the center of an ellipse when the
foci remain fixed and approaches 0.e

r �
5

1 � 3 sin�� � ��4�r �
5

3 � 3 cos �

r �
5

10 � sin �
r �

5
1 � 2 cos �

50. HOW DO YOU SEE IT? Identify the conic in
the graph and give the possible values for the
eccentricity.

(a) (b)

(c) (d)
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10.6 Polar Equations of Conics and Kepler’s Laws 741

61. Explorer 18 On November 27, 1963, the United States
launched Explorer 18. Its low and high points above the surface
of Earth were approximately 119 miles and 123,000 miles (see
figure). The center of Earth is a focus of the orbit. Find the
polar equation for the orbit and find the distance between the
surface of Earth and the satellite when (Assume that
the radius of Earth is 4000 miles.)

62. Planetary Motion The planets travel in elliptical orbits
with the sun as a focus, as shown in the figure.

(a) Show that the polar equation of the orbit is given by

where is the eccentricity.

(b) Show that the minimum distance (perihelion) from the sun
to the planet is and the maximum distance
(aphelion) is 

Planetary Motion In Exercises 63–66, use Exercise 62 to
find the polar equation of the elliptical orbit of the planet, and
the perihelion and aphelion distances.

63. Earth kilometers

64. Saturn kilometers

65. Neptune kilometers

66. Mercury kilometers

68. Comet Hale-Bopp The comet Hale-Bopp has an elliptical
orbit with the sun at one focus and has an eccentricity
of The length of the major axis of the orbit is
approximately 500 astronomical units.

(a) Find the length of its minor axis.

(b) Find a polar equation for the orbit.

(c) Find the perihelion and aphelion distances.

Eccentricity In Exercises 69 and 70, let represent the 
distance from a focus to the nearest vertex, and let represent
the distance from the focus to the farthest vertex.

69. Show that the eccentricity of an ellipse can be written as

Then show that 

70. Show that the eccentricity of a hyperbola can be written as

Then show that 
r1
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e � 0.2056

a � 5.791 � 107
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In Exercise 65, the polar
equation for the elliptical
orbit of Neptune was
found. Use the equation
and a computer algebra
system to perform each 
of the following.

(a) Approximate the 
area swept out by a 
ray from the sun to the 
planet as increases from 0 to Use this result to 
determine the number of years required for the planet to
move through this arc when the period of one revolution
around the sun is 165 years.

(b) By trial and error, approximate the angle such that the
area swept out by a ray from the sun to the planet as 
increases from to equals the area found in part (a)
(see figure). Does the ray sweep through a larger or 
smaller angle than in part (a) to generate the same area?
Why is this the case?

(c) Approximate the distances the planet traveled in parts 
(a) and (b). Use these distances to approximate the 
average number of kilometers per year the planet 
traveled in the two cases.
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